Drought effects on agricultural productivity across EU regions

Andrea Pronti

Università Cattolica del Sacro Cuore, Milan, Italy

Edoardo Baldoni, Dolores Rey Vicario, Dimitrios Kremmydas, Pascal Tillie

Joint Research Centre, European Commission, Seville, Spain

29th PACIOLI-workshop Montegrotto Terme, Italy, 6th of October – 9th of October 2024

Introduction

Empirically assess the **effect of drought on agricultural yields** in the EU27

Annual crop yields of **common wheat** and **maize** linked spatially to the **Combined Drought Indicator** of the European Drought Observatory

Unbalanced panels of FADN regions for the period 2013-2021

We analyze the effect of drought by severity and sub-period of the year

Literature and contribution

No clear and agreed definition of drought (Dracup et al., 1980; Wilhite and Glantz, 1985)

Mysiak et al. (2013), Jenkins (2012; 2015), Neumann et al. (2015), Stagge et al. (2015) link drought events and effects for simulating projections

Garcia-Leon et al. (2021): **crop yields-cumulated fAPAR** anomalies in Italy; use estimated results to simulated future scenarios of fAPAR anomalies

Kuwayama et al. (2019): U.S. drought monitor a weekly drought index; effects on maize and soybean vary: -0.1% to -1.2% per week in drylands, -0.1% to -0.5% in irrigated counties, extreme local effects up to -8%/week

Literature and contribution

No clear and agreed definition of drought (Dracup et al., 1980; Wilhite and Glantz, 1985)

Mysiak et al. (2013), Jenkins (2012; 2015), Neumann et al. (2015), Stagge et al. (2015) link drought events and effects for simulating projections

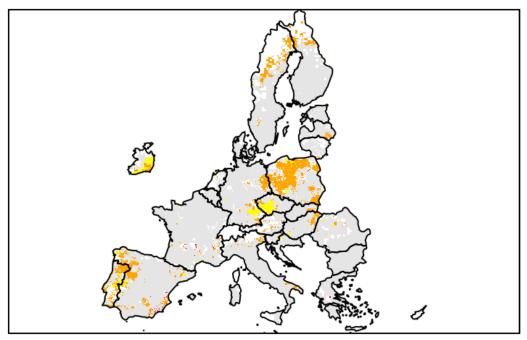
Garcia-Leon et al. (2021): **crop yields-cumulated fAPAR** anomalies in Italy; use estimated results to simulated future scenarios of fAPAR anomalies

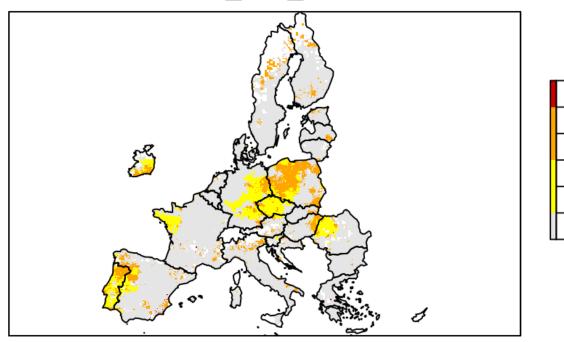
Kuwayama et al. (2019): U.S. drought monitor a weekly drought index; effects on maize and soybean vary: -0.1% to -1.2% per week in drylands, -0.1% to -0.5% in irrigated counties, extreme local effects up to -8%/week

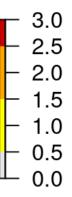
Main contributions

Estimate yield losses of wheat and maize in the EU Drought at annual and sub-annual frequency (4-month)

Data


Data	Source	Frequency	Resolution	Period	
Crop yields + farm info	FADN	Annual	Regional	2004 - 2021	
Combined Drought Indicator	European Drought Observatory	10 day	5 km grid	2013 - onwards	
Crop masks	Monitoring Agricultural Resources Unit (MARS JRC)	Annual	25 km grid	1980 - 2022	
Temperatures	Copernicus Climate Data Store	Daily	10 km grid	1960 - onwards	


Data are aggregated at **FADN regional level** or the period 2013-2021. Drought index constructed at annual and 4-month frequency to capture effects in growing stages

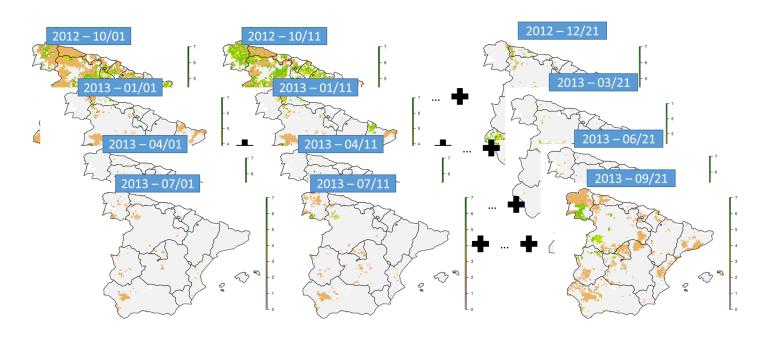

Drought data

2015_CDI_0401

2015_CDI_0411

Combined Drought Indicator from European Drought Observatory:

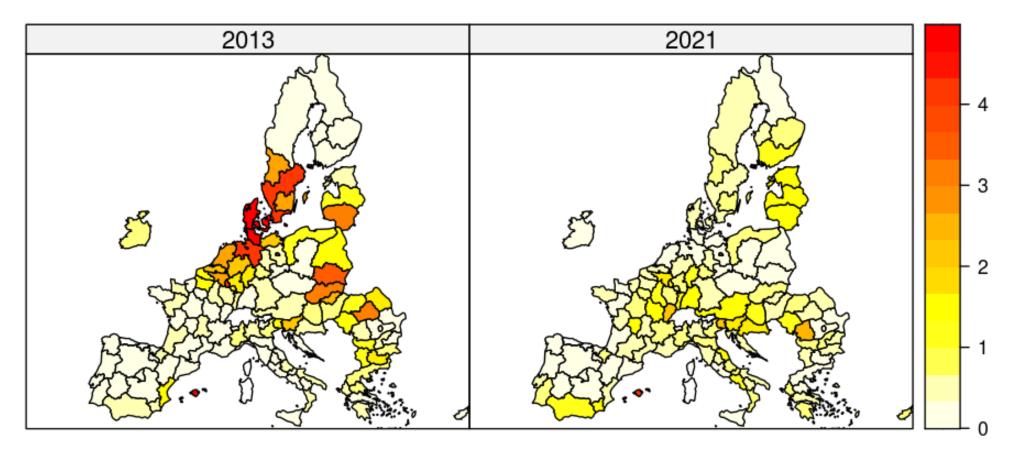
- Stand. prec. index, soil moisture anomaly, fAPAR, CDI(t-1)
- 10-day frequency
- Three classes of drought: watch, warning, alert


Drought index

$$DI1_{region,crop}^{year} = \sum_{10-day}^{year} \frac{Area Drought 1_{crop}}{Area_{crop}}$$

Min=0 Max=36

Drought index



$$DI1_{region,crop}^{year} = \sum_{10-day}^{year} \frac{Area Drought 1_{crop}}{Area_{crop}}$$

$$DI1_{region, crop}^{period} = \sum_{10-day}^{period} \frac{Area Drought 1_{crop}}{Area_{crop}}$$
 Min=0 Max=12

Drought index

DI3 - Alert: Wheat

Estimating equations

yield_{it} =
$$\sum_{s=1}^{3} \beta_s DI_{s;it} + \theta X_{it} + \varepsilon_{it}$$

yield_{it} =
$$\sum_{s=1}^{3} \sum_{p=1}^{3} \gamma_{s,p} DI_{s,p;it} + \theta X_{it} + \varepsilon_{it}$$

LSDV estimation with covariates: temperature, input use, time and individual fixed-effects, time trends, share of land by farm typology, irrigation data, interactions

Marginal effect of DI in terms q/ha if drought hit for 10 days 100% of the cropped area

Results

Variable		Commo	n wheat			Ma	nize	
DI (Total)	-0.082				-0.576***			
DI (Total) Planting DI (Total) Midseason DI (Total) Harvesting		-0.049 0.051 -0.263**				0.106 -1.263*** -0.185		
DI (Watch) DI (Warning) DI (Alert)			-0.135 -0.029 -0.852**				-0.274 -0.506*** -1.895*	
DI (Watch) Planting DI (Warning) Planting DI (Alert) Planting				0.205 0.024 -0.288				-0.007 0.437 -2.780
DI (Watch) Midseason DI (Warning) Midseason				0.363 -0.009				-0.748 -1.244***
DI (Alert) Midseason				-0.546				-2.714*
DI (Watch) Harvesting				-0.710**				1.351
DI (Warning) Harvesting				0.033				-0.462
DI (Alert) Harvesting				-2.813***				0.087

Common Wheat: Oct – Jan (Planting), Feb – May (Midseason), Jun – Sep (Harvesting) Maize: Jan – Apr (Planting), May – Ago (Midseason), Sep – Dec (Harvesting)

Conclusions

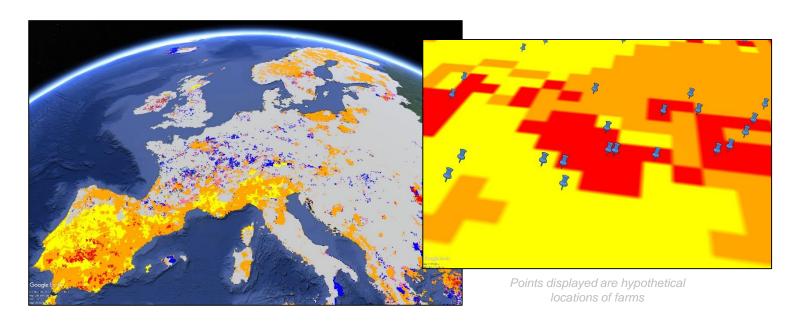
Estimation at regional level of **yield impact of drought** for wheat and maize in the EU for the period 2013-2021

Crop masks to establish a spatial link between drought and crop production

Significant negative effects:

- Wheat: affected during harvesting and by DI (Alert) and (Watch).
 From -0.5% to -5% per dekad
- Maize: affected in Midseason and by DI (Warning) and (Alert).
 From -0.4% to -3.6% per dekad

Future development


1) Role of irrigation as mediator of drought effects

Future development

- 1) Role of **irrigation as mediator** of drought effects
- 2) Other crops and variables
 - Cereals, Fruits, Others
 - Costs, Prices, Income

Future development

- 1) Role of irrigation as mediator of drought effects
- 2) Other crops and variables
 - Cereals, Fruits, Others
 - Costs, Prices, Income
- 3) Micro-level data with farm coordinates to improve link with drought

Thank you

© European Union 2024

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.